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A B S T R A C T

For data backup processes to cloud infrastructure, there is a clean trade off between backing up frequently
(improving data safety) and reducing resource usage (power consumption and communication cost). With rapid
growth of data storage requirements in recent years, we need to find the right balance between both objectives.
To explicitly address this trade off, we model a wide set of exhaustive data backup processes as a general batch
service queueing model with multiple vacations and probabilistic restarts.

We study this queueing model and establish expressions for its performance measures such as system content
and queue content distributions. This analysis aids in computing Quality of Service (QoS) measures of the data
backup process such as the fraction of time the backup server is busy, the frequency of new connections and the
age of the data at the beginning of a backup period. This enables us to quickly examine the dependence of QoS on
the model parameters as well as to compute the optimal parameters in the backup process. We illustrate the
latter by defining a particular cost function of a user and by framing an optimization problem.

1. Introduction

Processes which involve movement of data, including backup pro-
cesses, consume much electricity and bandwidth. A significant part of
this power is utilized to keep the system on in an idle state. Nguyen
et al. [1] state, from the estimates of the US Environment Protection
Agency, that 1.5% of the total power produced in US was used for Data
Center computing. Further, they note that the ICT industry causes 2% of
global CO2 emissions. Therefore, in addition to higher electricity cost,
under-utilization of computing resources leads to higher carbon foot-
print. Hence, new models are being proposed, such as in Guan et al. [2],
to minimize the energy usage in data centers. Studies such as Chen et al.
[3] have analyzed that the requirement of data storage technologies
will grow exponentially and may grow to as high as 40 ZB by 2020 from
1.8 ZB in 2011. With this rapid increase machines need to schedule data
backup processes efficiently and cost effectively.

Organizations have started moving from local disks towards cloud
systems as primary storage nodes to run operations. Amazon [4] pro-
vides a list of major companies using its cloud services which includes

some very well-known companies such as Netflix and Thomson Reuters.
This move is driven by many remarkable benefits of the cloud infra-
structure such as ease of setup, higher reliability, availability, security
and protection from regional calamities or power failures (see Chang
and Wills [5] for more details).

With the rapid increase in data storage requirements and migration
towards cloud storage, the right balance between doing backups very
frequently and reducing resource consumption has to be found. To help
finding this balance, we model a wide set of data backup processes as a
generic batch service queueing model with vacations, exhaustive ser-
vice and probabilistic restarting conditions. As we will explain in
Section 2, batch service queueing models with vacations provide a very
natural way of modeling of data backups to cloud infrastructure. We are
able to precisely compute the Quality of Service (QoS) measures of the
data backup processes using this model. Nevertheless, to the best of our
knowledge, data backup processes have been rarely modeled and ana-
lyzed as queueing processes. Yu et al. [6] propose a queueing model of
cloud based streaming services to evaluate service quality. Van de Ven
et al. [7] model data backups as a two dimensional Markov chain and
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study optimization of the network bandwidth utilization. Xia et al. [8]
present decision algorithms, utilizing Markov decision processes, which
use constraints on recovery parameters to decide when to backup and
which type of backup to perform.

Queueing models with vacations, in general, have been studied
extensively in the literature (see Doshi [9] and Naishuo and George
[10] for details about some applications). In particular, some relevant
batch service queueing models with vacations have been studied.
Sikdar and Gupta [11] study a server which goes into a vacation when
the system is empty and restarts service on return if there is at least one
customer in the system. Arumuganathan and Jeyakumar [12] study a
batch service model with multiple vacations where the server requires a
minimum threshold of queue size to keep the server on and another
threshold to restart it after the vacation. The model also takes into
account a setup and close down time for the server. Other models
studied by Sikdar and Gupta [13] and Lee et al. [14] consider a single
vacation case with a threshold where the system waits in idle condition
after returning from a vacation if the threshold is not matched. The
queueing models listed above have not been built and studied from the
perspective of data backup processes. Our model, on the other hand, is
specifically designed to model a wide range of exhaustive data backup
processes.

The purpose of our paper is to model exhaustive data backup pro-
cesses as a very general batch service queueing model with vacations
and probabilistic restarting conditions. It is already well known that
discrete-time models are more appropriate to model telecommunication
processes (see Bruneel and Kim [15]). We thoroughly analyze the dis-
crete time queueing model and obtain various performance measures.
We then explicitly translate performance measures of the queueing
model to QoS measures of data backup processes. Our model and the
QoS measures are useful to find the right balance between doing cloud
backups frequently enough (to increase data safety) and reducing re-
source usage (power consumption and communication costs). We study
the dependence of QoS measures on the model parameters as well as
compute the values of these parameters that minimize the user cost
function. Note that, as stated in Chen and Trivedi [16], pure threshold
policies may not be optimal. Therefore, we define parameters for
probabilistic restarts to model the behavior of the server. Moreover,
since the cost of connecting to cloud infrastructure is typically in-
dependent of the amount of data backed up, our work focuses on ex-
haustive policies (see eg the cost structure of Amazon Web Services [4]
and Microsoft Azure Storage [17]).

This paper presents an extension of our previous work Claeys et al.
[18]. The model studied by Claeys et al. [18] assumes single slot va-
cations and single slot service times. Our model extends the vacation
length and service lengths to general distributions as well as introduces
probabilistic restarting conditions. Making the model much more gen-
eral implies that it models a wider set of exhaustive data backup po-
licies. Additionally, this work looks at significantly more performance
measures and a more thorough modeling of data backups.

We characterize our model using four types of parameters: l
(threshold to begin service with probability 1), c (capacity of backup
server), … −α α α, , , l1 2 1 (starting probabilities) and T (a random variable
which governs the distribution of vacation lengths). Moreover, both the
arrival distribution (the number of arrivals in a slot) and service times
(which depend on the batch size) can be chosen freely provided that the
system remains stable. These flexible parameters empower us to set
their values based on the traffic seen by the server and required system
performance. Our aim is to answer questions such as: given the service
level agreements, what are the right model parameters to maintain a
stable and efficient system? Such questions can be answered accurately
once we have computed the exact expressions of the main QoS mea-
sures in terms of the parameters. The main advantage of our analysis is
that we can compute the QoS measures for a general set of parameters.

We start with a description of the model and justify its suitability for
data backups in Section 2. We also discuss in detail the utility of each

parameter of the model. It is then followed by the analysis of the model
in Section 3. We also highlight some observations at the service/vaca-
tion epochs which give us some important relations to solve our model.
Using the results of Section 3, we deduce the QoS measures of data
backups in Section 4. We compute measures such as the age of data at
the beginning of a backup period and the probability that the backup
server is busy in a slot. We also evaluate the performance of the system
for different system parameters in Section 5. Further, we construct an
optimization problem to highlight how one can compute the optimal
parameters to minimize user cost. In the last section we summarize our
observations and results from previous sections and present possible
directions for future work.

2. Backup process model

In data backup processes, packets that have not yet been backed up
are part of the backlog. The backlog size then corresponds to the
number of packets that have not yet been backed up. In case of ex-
haustive backup service processes, when the backup server initiates a
backup, it continues backing up until the backlog size becomes zero.

We model the backlog as a queue where the customers represent
data packets and the backup server by a batch server. As a result,
packets arriving in the queue correspond to newly generated packets
that have not yet been backed up.

The batch server has a capacity of maximum c packets and it em-
ploys an exhaustive policy i.e. the server keeps serving until the system
content becomes zero. At that moment, the backup server immediately
goes into energy saving mode which is modeled as a vacation of T slots
with T a random variable. If upon returning from the vacation, the
system content (i.e. the total number of packets in the queue and the
server) is larger than or equal to l, the server immediately initiates the
service (a new backup); otherwise it starts the service with a probability
αi, where i is the number of packets in queue. With probability − α1 i
the server goes into another vacation i.e. stays in the energy saving
mode. Lengths of vacation periods are independent and identically
distributed.

2.1. Data storage on cloud infrastructures

A cloud data backup process in an organization involves several
components as illustrated in Fig. 1. This setup is commonly used across
the industry to perform their data backups such as services offered by
company host-it [19]. Generally, the cloud infrastructure services are
provided by an external organization such as Amazon [4], Microsoft
[17]. The namenode drives and monitors all the data processes running
on the cloud infrastructure while the data nodes store the data frag-
ments of all the users. All the devices in the organization communicate
over LAN and the data generated is kept in sync with the data packets
queue (see Fig. 1). The local backup server coordinates the backup of
the data packets in the data packets queue to the cloud infrastructure. It
communicates with the namenode of the cloud infrastructure and
drives the whole backup process. It is exactly the data packets queue
and the backup server that are modeled by our queueing model. Fig. 2
highlights the components of our queueing model and connects it with
the cloud data backup process of Fig. 1.

When the backup server wants to write data, it sends a request to
the namenode. Namenode stores the metadata of the data to be stored
and sends back the IP-addresses of the data nodes on which the backup
server is allowed to write the data. A data packet completes its service
when it has been written to the cloud infrastructure. Our work assumes
that the backups performed are incremental in nature, i.e., only the
changes in the system from the last copy are saved and backed up.

Now we discuss the model choices and the importance of the model
parameters and characteristics.

Why is it a batch service model?
Data packets are segmented and transmitted in batches from the
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local backup server to the cloud to improve the efficiency of the
transmission. (see Fry [20], Zomaya and Sakr [21] for details)

Why is the backup service exhaustive?
A new connection is established when the server communicates

with the namenode of the cloud service provider, that is, when a new
backup is initiated. Cloud service providers charge cloud users for each
new connection. Since the cost of a new connection is independent of
the amount of data to be backed up, an exhaustive service policy comes
naturally. The details of cost structure of cloud service providers are
available at Amazon [4] and Microsoft [17].

Why are starting probabilities included in the model?
In contrast to a fixed threshold policy, probabilistic restarting con-

ditions allow the system to restart service even when the threshold l has
not been met. It is important to note that fixed threshold based policies
are just a special case of our model parameters, i.e., =α 0,i ∀i< l where
l is the threshold. Therefore, including the restarting probabilities
makes the model more generic and encourages a much wider set of
exhaustive backup policies.

Further, randomization has often been used to achieve an im-
provement in the efficiency of the system. For instance Boullery et al.
[22] use randomization to ease-off the traffic for data backups and
therefore reduce the peak load. Gkantsidis and Rodriguez [23] use
randomization to improve the efficiency of distribution of data blocks
over a network. Similarly, by including probabilistic restarts in our
model, we are able to achieve a trade-off between contrasting QoS
measures. This is also illustrated in Section 4.4.

Why are vacations included in the model?
Data processes are very power intensive and a significant amount is

spent to keep the system idle while it waits for packets to arrive. As
stated in Section 1 from Nguyen et al. [1], 1.5% of total power pro-
duced in the US was used for Data center computing. By introducing
vacations, the local backup server sleeps during the idle periods and
power consumption of the backup server is reduced. Moreover, by
modeling vacation length as a random variable, we allow our model to
incorporate more randomization which makes it, again more generic.
Clearly, deterministic fixed length vacations is just a special case of this
model parameter.

2.2. Recovery point objective

Recovery point objective (RPO) is one of the most crucial para-
meters defined in the literature of data backup processes. Recovery
point is defined as the time point in history such that the system is
recoverable up to that point in case of an immediate disaster. The RPO
gives us a bound on the age of the recovery point i.e. the difference
between current time and recovery point (see Druva [24] for more
details). Therefore, RPO defines a bound on the waiting time of data
packets during a data backup cycle where a data backup cycle is defined
as consecutive vacation and service periods. In a stable system, the data
packet which arrives first in a data backup cycle suffers maximum wait
for restart of backup process. In paragraph 4.4, we therefore compute
the waiting time of this data packet as ensuring bounds on this waiting

Fig. 1. Components of the backup process.

Fig. 2. Queueing model of Cloud data backup process.
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time is crucial to satisfy the RPO.
Now we introduce the variables used for the analysis of the model.

2.3. Definitions and assumptions

• c : capacity of the backup server; defines the maximum number of
packets that can be served in a single batch.

• k : this subscript defines the slot number.

• l : threshold for service start. When the system wakes up and finds
≥ l packets the server resumes service.

• αi : probability that a backup process is started in presence of exactly
i packets with = ≤ ≤ ∀ < <α α i l0, 0 1, 0i0 and = ∀ ≥α i l1,i .

• Qk : queue content (the number of packets in the queue, excluding
the ones receiving service) during the kth slot.

• Sk : server content (the number of packets in service) during the kth
slot. Since =S 0k when the backup service is in vacation, we use this
event as a proxy to check if the backup is running.

• Gm : service time required for a batch of m packets. This stochastic
variable has a (general) generating function Gm(z).

• Rk : remaining time in slot k of the current service/vacation period.
When the server is serving packets it is the remaining serving time of
those packets; otherwise, it is the remaining vacation time of the
current vacation.

• T : vacation length. This variable has a generating function T(z).

• Ak : number of arrivals in slot k. It has a generating function A(z).
Hence, we assume independent and identically distributed (i.i.d.)
arrivals in each slot. However, this can be any general distribution.

• ρ : load of the system defined by ′ ′A G
c

(1) (1)c .

All the terms defined above are discrete variables. Without loss of
generality, in the analysis we have assumed that l≥ c. This is because a
model with = <l l l c,0 0 can be rewritten as another equivalent model
with =l c and = ∀ ≤ <α l i c1,i 0 while keeping all the remaining
parameters the same. Further, we assume that the probability of zero
arrivals in a slot A(0)> 0. Otherwise, the backlog would never be
empty and the system would never enter a vacation.

3. Analysis of the model

We study the discrete time model of the system defined in Section 2
using the definitions from paragraph 2.3. We calculate the joint gen-
erating function of the queue content, server content and remaining
service time at a random slot boundary. From this generating function
we deduce some of the performance measures of the model such as the
system content at a random slot boundary and the number of customers
served in a random batch.

This analysis is critical to be able to compute the QoS measures of
the data backup process in Section 4. It also helps us to select the
starting parameters. We illustrate the selection of parameters using an
optimization problem in Section 5.3.

3.1. Transition equations

We relate the random vectors (Qk, Sk, Rk) and + + +Q S R( , , )k k k1 1 1 . The
relations are governed by following observations

• If the remaining service/vacation time of the current batch is more
than one slot (Rk>1), then there is no change in the system in slot

+k 1 other than new arrivals = ++Q Q A( )k k k1 .

• If the server is serving during slot k and the remaining service time is
equal to 1 slot =R( 1)k and there are a positive number of packets in
queue at the end of the slot + >Q A( 0),k k then the server starts
service of a new batch in slot +k 1 due to the exhaustive service
policy.

• If the remaining service/vacation time is equal to 1 slot =R( 1)k and
there are no packets in the queue at the end of the slot

+ =Q A( 0),k k the server goes for a vacation starting in slot +k 1.
• If the server is in vacation and is about to wake up in the next slot

=R( 1),k the server begins service with probability αi in slot +k 1,
where i is the number of packets in queue at the end of the slot k

= +i Q A( )k k .

This leads to the following relations

⎛
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⎠
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( , , ) if 1, ,

if 1, 0, , 0
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Note that Rk≥ 1, because as soon as it becomes one, it either changes to
the service time of next batch or a multiple slot length vacation in the
next slot. For this reason we will work with −R 1k rather than Rk in the
generating function.

3.2. Limiting generating function

Define,

=+
−+ + +( )V z y x E z y x( , , )k

Q S R
1

1k k k1 1 1

and

=E z E z Pr( {condition}) [ condition] (condition).X X

Using the transition equations defined in Section 3.1, one can write
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which can be transformed in

∑
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(1)

In heavy traffic conditions, the system never takes vacations and the
batch size is always the maximum c. Therefore, for the system to remain
stable, the average amount of work arriving during a service period
should be less than the capacity of the batch server. The stability con-
dition of this model is therefore given by ′ ′ <A G c(1) (1) ,c i.e. ρ<1. The
vacations do not play a role in the stability condition which is a stan-
dard results in queueing systems with vacation. Powell and Humblet
[25] prove the stability condition of such queueing systems by proving
that the underlying Markov chain of the system content is ergodic under
the condition ρ<1. Under the assumption that ρ<1, we look at the
state of the system variables in steady state.

Define

= + = = >
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Our first aim is to write all the expressions in terms of the unknown
boundary probabilities  = … −d d d d c{ (0), (1), (2), , ( 1),

… −d d d l(1), (2), , ( 1)}0 0 0 and then formulate a linear system to solve
for these unknowns. From (1), by letting k→∞ and replacing the terms
by their generating functions, we can write
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Using the relation (6) we can rewrite (5) as
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m

c
m

m
m c c

c

c

c

c

c

m

c
m m

m m

m c

l
m m c c

c m

1

1

1

1

0

1

0

(7)

From this equation, we can find expressions for V(z, y, 0) and V(z, 1, 0)
by different substitutions of x, y and z. Substituting =x A z( ) followed
by y→ 1 gives us

∑

∑

∑

− = −

+ −

+ − −

+ − −

=

−

=

−

=

−

A z V z z G A z z T A z G A z d

z G A z z G A z d m

z T A z G A z z α d m

z T A z G A z z α d m

( ) ( , 1, 0)( ( ( ))) ( ( ( )) ( ( )) (0)

( ( ( )) ( ( ))) ( )

( ( ( )) ( ( ))) (1 ) ( )

( ( ( )) ( ( ))) (1 ) ( ).

c
c

c
c

m

c
c

m
m

c

m

c
m

m
c

m

m c

l
c

c
m

m

1

1

1

1

0

1

0

(8)

Similarly, using the substitution =x A z( ) in (7) yields

∑

∑

∑

⎜= ⎛
⎝

⎞
⎠

− ⎛
⎝

⎛
⎝

⎞
⎠

− ⎞

⎠
⎟ + −

+ − −

+ − −

=

−
−

=

−

=

−
−

A z V z y A z V z G A z y
z

y
z

G A z

T A z d y G A z z y G A z d m

z T A z y G A z α d m

z T A z z y G A z α d m

( ) ( , , 0) ( ) ( , 1, 0) ( ( )) ( ( ))

( ( )) (0) ( ( ( )) ( ( ))) ( )

( ( ( )) ( ( )))(1 ) ( )

( ( ( )) ( ( )))(1 ) ( ).

c

c c

c

m

c
m

m
m c c

c

m

c
m m

m m

m c

l
m m c c

c m

1

1

1

1

0

1

0

(9)

Clearly, one can use (8) in the latter expression and get an expression
for V(z, y, 0) in terms of the unknown boundary probabilities . This
expression would be useful to compute an expression of system content
in Section 3.3. In the remaining part of this section, our primary aim is
to form a solvable linear system of equations in . As a step towards this
objective, we look at the generating function of the system content.

3.3. Generating function of system content

The system content in any time slot is defined as the number of
packets either in queue waiting for service or currently in service.
Therefore, its generating function is given by V(z, z, 1). In (7), replacing

=x 1, and =y z gives us,

− = − +A z V z z A z V z z A z V z(1 ( )) ( , , 1) ( ) ( , , 0) ( ) ( , 1, 0). (10)

To further solve (10), replace =x A z( ) and =y z in (7) which gives us

∑

∑

∑

= + −

+ −

+ − −

+ − −

=

−

=

−

=

−

A z V z z G A z A z V z T A z G A z d

z G A z G A z d m

z T A z G A z α d m

z T A z G A z α d m

( ) ( , , 0) ( ( )) ( ) ( , 1, 0) ( ( ( )) ( ( ))) (0)

( ( ( )) ( ( ))) ( )

( ( ( )) ( ( )))(1 ) ( )

( ( ( )) ( ( )))(1 ) ( ).

c c

m

c
m

m c

m

c
m

m m

m c

l
m

c m

1

1

1

1

0

1

0

(11)

Using Eqs. (8)–(11) we get an expression for V(z, z, 1) in terms of the
unknowns , which after some rewriting yields
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∑

∑ ∑

− − = +

+ +

=

−

=

−

=

−

A z z G A z V z z B z d B z d m

W z d m R z d m

(1 ( ))( ( ( ))) ( , , 1) ( ) (0) ( ) ( )

( ) ( ) ( ) ( ),

c
c

m

c

m

m

c

m
m c

l

m

0
1

1

1

1

0

1

0

(12)

where

= − −
= − + −

+ −
= − + −

+ − −
= − − −

B z G A z z T A z
B z G A z G A z z z z z G A z

z z G A z
W z G A z G A z z z z z G A z

G A z T A z z z α
R z z G A z z T A z α

( ) ( ( ))(1 )( ( ( )) 1),
( ) ( ( )) ( ( ))( ) ( 1) ( ( ))

(1 ) ( ( )),
( ) ( ( ( )) ( ( ))( ) ( 1) ( ( ))

( ( )) ( ( )) (1 ))(1 ),
( ) ( ( ))(1 )( ( ( )) 1)(1 ).

c
c

m m c
m c m c

c
c m

m

m m c
c m c m

m

c
m c

m

m
m

c
c

m

0

For a given value of z, the values A(z), Bm(z), Wm(z) and Rm(z) are
known quantities. We now use a result from Adan et al. [26] to prove
that −z G A z( ( ))c

c has c zeros inside the complex unit circle |z|≤ 1.
They have proved that if F(z) is a probability generating function with F
(0)> 0 and F′(1)< c with ∈c , then the function −z F z( )c has ex-
actly c zeros inside the unit circle |z|≤ 1.

Clearly, Gc(A(z)) is the probability generating function of the
number of arrivals in a service period of c packets with Gc(A(0))> 0
since A(0)> 0. Moreover, from the stability condition

′ = ′ ′ <F G A c(1) (1) (1)c . Therefore, from Theorem 3.2 in Adan et al.
[26], −z G A z( ( ))c

c has c zeros in the complex unit disk |z|≤ 1. This
includes the trivial solution =z 1.

Therefore, Eq. (12) has −c 1 zeros in the complex unit disk with
=z 1 excluded i.e. {z: |z|≤ 1, z≠ 1}. This gives us −c 1 linear equa-

tions in unknowns , however the cardinality of  is + −c l 1.
Therefore, we need l more relations to form a solvable linear system of
equations. For more relations, we look at service initiation opportunities.
These opportunities are defined as the epochs of start/ end of service/
vacation times. These observations enable us to find more linear rela-
tions between the unknowns  which is a step further towards forming
a solvable linear system in these unknowns.

3.4. Observation at service initiation opportunities

We observe the system content at the epoch points of service in-
itiation opportunities. We start by defining a few terms which are also
illustrated in Fig. 3:

• j : this subscript defines the epoch number being looked at.

• Uj = the system content at the end of jth epoch, i.e., the number of
packets waiting in the queue or in service at the end of the epoch.

• τj = 1, if the jth period is a service period, 0 if vacation period.

At the end of a vacation (v1), if the system has an empty backlog it
will enter a new vacation (v2). This can happen iff the following con-
ditions are true

• at the beginning of the vacation (v1), the system had an empty
backlog, and

• there were no arrivals during this vacation (v1).

This gives us (13).

= = = =−Pr U τ Pr U T A( 0, 0) ( 0) ( (0))j j j 1 (13)

Similarly, the system wakes up with n packets (n>0) in the backlog iff

• the system entered the vacation with empty backlog and there were
n arrivals during the vacation, or

• the system entered the vacation with i packets present (i>0) and
there were −n i arrivals during the vacation.

Note that, for the system to enter a vacation with i packets where
0< i≤ n, the previous epoch also has to be a vacation epoch because of
the exhaustive service policy. So for 0< n< l, where tA(n) denotes the
probability of n arrivals in a vacation period, we have

∑= = = = = − −

+ =
=

− −

−

Pr U n τ Pr U i τ α t n i

Pr U t n

( , 0) ( , 0)(1 ) ( )

( 0) ( ).

j j
i

n

j j i A

j A

1
1 1

1 (14)

Moreover, tA(n) is a known constant because it is the coefficient of zn in
T(A(z)). Under the assumption of ρ<1, the system would reach a
steady state and under this steady state, the limiting probabilities of
these terms are defined as

= = =

= =
→∞

→∞

π m Pr U m τ i

π m Pr U m

( ) lim ( , ),

( ) lim ( ).

i
j

j j

j
j

Hence, we can write

=π π T A(0) (0) ( (0)),0 (15)

∑= − − + < <
=

π n π i α t n i π t n n l( ) ( )(1 ) ( ) (0) ( ), 0 ,
i

n

i A A0
1

0
(16)

= +π n π n π n( ) ( ) ( ).0 1 (17)

3.5. Relating π, d0(m) and d(0)

Now we relate the terms defined in (15)–(17) and (2)–(4). In earlier
sections we defined,

= + = = =

= + = = = =
→∞

→∞

d m Pr Q A m R S

Pr Q A m S R Pr R

( ) lim ( , 1, 0)

lim ( , 0 1) ( 1).
k

k k k k

k
k k k k k

0

Observe that when =R 1,k the starting boundary of slot +k 1 is
the beginning of a service initiation opportunity epoch which
has been analyzed in Section 3.4. Therefore, →∞limk

+ = = = = = =→∞Pr Q A m S R Pr U m τ( , 0 1) lim ( , 0)k k k k j j j and
+ = = = =→∞ →∞Pr Q A m R Pr U mlim ( 1) lim ( )k k k k j j . These can be

used to come up with the following relations,

= =
→∞

d m π m Pr R( ) ( ) lim ( 1),
k

k0 0

= =
→∞

d m π m Pr R( ) ( ) lim ( 1).
k

k

Therefore, we can translate (15)–(17) to equations in d0(m) and d(0)
and we obtain

=d d T A(0) (0) ( (0)),0 (18)

∑= − − + < <
=

d n d i α t n i d t n n l( ) ( )(1 ) ( ) (0) ( ), 0 .
i

n

i A A0
1

0
(19)

(19) can be rewritten as,

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⋮
−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

B

d
d
d

d l

·

(0)
(1)
(2)

( 1)

0
0

0

,
0

0

0 (20)

where B is defined as

=

⎡

⎣

⎢
⎢
⎢
⎢

…
…
…

⋮ ⋮ ⋮ ⋱ ⋮
…

⎤

⎦

⎥
⎥
⎥
⎥

− − −
− − − − −
− − − − −

− − − − − − − − − − −

B .

t α t
t α t α t
t α t α t

t l α t l α t l α t

(1) 1 (1 ) (0) 0 0
(2) (1 ) (1) 1 (1 ) (0) 0
(3) (1 ) (2) (1 ) (1) 0

( 1) (1 ) ( 2) (1 ) ( 3) 1 (1 ) (0)

A A

A A A

A A A

A A A l A

1

1 2

1 2

1 2 1 (21)

We do not include (18) in the matrix equations because ∉d (0)0 .
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However, this equation will be useful while looking at the performance
measures in Section 3.8. Summarizing, (20) gives us −l( 1) linearly
independent equations between the unknowns in  which are crucial to
create a solvable system.

Combining the results of Section 3.3 and 3.5, we have in total
+ −c l 2 equations which is still less than the number of unknowns

( + −c l 1). However, by the normalization property of generating
functions, we know that ==V z z( , , 1) 1z 1 . This normalization condi-
tion, discussed in paragraph 3.6, gives us an additional relation in the
unknowns. Combining all these equations together, we get a solvable
system of + −l c 1 linearly independent equations and + −l c 1 un-
knowns .

3.6. Normalization condition

As stated above, the normality condition =V (1, 1, 1) 1 plays a cri-
tical role to get a solvable linear system. This equation is obtained by
applying L’Hospital’s rule twice to (12) which gives us

∑

∑

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

′
− ′ ′

⎞
⎠

+ ⎛
⎝

′
− ′ ′

⎞
⎠

−

+ ⎛
⎝

′ − ′
− ′ ′

⎞
⎠

− − =

=

−

=

−

cT
c G A

d cT
c G A

α d m

cG mG
c G A

d m α d m

(1)
(1) (1)

(0) (1)
(1) (1)

(1 ) ( )

(1) (1)
(1) (1)

( ( ) (1 ) ( )) 1.

c m

l

c
m

m

c
m c

c
m

1

1

0

1

1

0
(22)

To easily write the system of equations in matrix form, Eq. (22) can be
rewritten as

∑

∑

∑

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

′
− ′ ′

⎞
⎠

+ ⎛
⎝

′ + ′ − ′
− ′ ′

⎞
⎠

− + ⎛
⎝

′
− ′ ′

⎞
⎠

−

+ ⎛
⎝

′ − ′
− ′ ′

⎞
⎠

=

=

−

=

−

=

−

cT
c G A

d
mG cT cG

c G A

α d m cT
c G A

α d m

cG mG
c G A

d m

(1)
(1) (1)

(0)
(1) (1) (1)

(1) (1)
(1

) ( ) (1)
(1) (1)

(1 ) ( )

(1) (1)
(1) (1)

( ) 1.

c m

c
c m

c

m
m c

l

c
m

m

c
m c

c

1

1

0

1

0

1

1

(23)

3.7. Original generating function

In this section we show that just like the generating function of
system content, it is possible to express the original generating function
defined in (2) in terms of the unknowns . We have already written V(z,
y, x) in terms of V(z, y, 0), V(z, 1, 0) and the unknowns d0(n)s and d(n)s
in (7). We have also shown that we can write V(z, y, 0) and V(z, 1, 0) in
terms of the unknowns in (8) and (9). Therefore, substituting (8) and
(9) into (7) we get

∑

∑

∑

− = +

+ −

+ −

=

−

=

−

=

−

x A z V z y x B z y x d B z y x d m

W z y x α d m

R z y x α d m

( ( )) ( , , ) ( , , ) (0) ( , , ) ( )

( , , )(1 ) ( )

( , , )(1 ) ( ).

m

c

m

m

c

m m

m c

l

m m

0
1

1

1

1

0

1

0

where

⎜⎜ ⎟

⎜ ⎟

= − +
− −

−
= −

+
− −

−
= − − −

+ ⎛
⎝

−
−

⎞
⎠

⎛
⎝

−

= ⎛
⎝

− +
− −

−
⎞
⎠

B z y x T x T A z
y G x G A z T A z

z G A z
B z y x y G x G A z

y G x G A z G A z z
z G A z

W z y x z T x T A z y G x G A z

z T A z G A z
z G A z

y G x G A z

R z y x z T x T A z
y G x G A z T A z

z G A z

( , , ) ( ) ( ( ))
( ( ) ( ( )))( ( ( )) 1)

( ( ))
,

( , , ) ( ( ) ( ( )))
( ( ) ( ( )))( ( ( )) )

( ( ))
,

( , , ) ( ( ) ( ( ))) ( ( ) ( ( )))

( ( )) ( ( ))
( ( ))

( ) ( ( )),

( , , ) ( ) ( ( ))
( ( ) ( ( )))( ( ( )) 1)

( ( ))
.

c
c c

c
c

m
m

m m
c

c c m
m

c
c

m
m m

m m

m
m

c
c

c
c c

m
m

c
c c

c
c

0

3.8. General performance measures of the model

In this section we write expressions of generating functions of some
common stochastic variables of this queueing model in terms of V(z, y,
x) and input functions. Since we have shown that V(z, y, x) can be
expressed in terms of the boundary probabilities in the set , the gen-
erating functions below can also be easily written as functions of these
boundary probabilities.

3.8.1. System content at random slot boundaries
As the system content includes both the customers in queue and

those in service, the pgf of the system content is given by the generating
function V(z, z, 1). Exact expression of this generating function was
computed in (12).

3.8.2. System content at service initiation opportunities
We have already looked at the generating function of d(m). From

(6), the generating function of the system content at service initiation
opportunities is

A z V z
V
( ) ( , 1, 0)

(1, 1, 0)
.

Moreover, one can write the generating function of the system content
at vacation completion times and service completion times respectively
as

−
−

A z V z
V

A z V z V z
V V

( ) ( , 0, 0)
(1, 0, 0)

, ( )( ( , 1, 0) ( , 0, 0))
(1, 1, 0) (1, 0, 0)

.
(24)

3.8.3. Number of customers served in a random batch
This is an important measure which reflects how efficiently the

server resources are being utilized. The sample space for the number of
customers in server at a slot boundary can be divided into two mutually
exclusive and exhaustive events, =S 0k and Sk>0. =S 0k implies that
the system is in vacation in the kth slot since server is empty. Therefore,
the generating function for the server content in a random batch is
given by

−
−

V y V
V

(1, , 1) (1, 0, 1)
1 (1, 0, 1)

.
(25)

Fig. 3. Illustration of service initiation opportunities, service periods and vacation periods.
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3.8.4. Queue content when the server is in vacation
Since =S 0k implies that the system is in vacation in kth slot, the

queue content during such a slot is given by the generating function

V z
V

( , 0, 1)
(1, 0, 1)

.
(26)

4. QoS measures of data backup policy

In this section we focus on the performance measures that are of
interest to the backup policy. The analysis done in Section 3 directly
gives us the first three QoS measures namely the backlog size, probability
that a new connection is made and the probability that the backup server
is busy. We also compute the age of the data at the beginning of a backup
period, i.e. time spent by first data packet of a backup cycle waiting for
backup to restart. In Section 5 we evaluate the performance of the system
by looking at the change in the first moment of these stochastic variables
versus change of load as well as versus the mean vacation time.

4.1. Backlog size

The queue content of the system is the size of the backlog of data
packets which are waiting for service. A bigger backlog size puts more
data at the risk of loss if the server crashes. Moreover, we have a finite
capacity of buffer size in practice. Therefore, we would want to keep
this quantity as small as possible. By the definition of generating
function V(z, y, x), the queue content has a generating function V(z, 1,

1). The mean queue content equals ∂
∂

=

V z
z

z

( , 1, 1)

1
.

4.2. Probability that a new connection is made

As mentioned previously, cloud service providers charge for new
connections made to their infrastructure. A new connection is made
whenever a new service period starts after a vacation period. Therefore,
we can write the probability of a new connection at a random slot as

> =→∞ +Pr S Slim ( 0, 0)k k k1 . We can compute this probability in terms
of known constants as below.

∑

∑

⎜

= = − = =

= ⎛
⎝

= = + = >

− = = =

− = = >

= − + =

= = =

= − −

→∞
+

→∞

+

+

=
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→∞
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=

−

Pr Pr S Pr S S

Pr S R Pr S R

Pr S S R

Pr S S R

V Pr Q A m S

S R

V α d m

(New connection) lim ( ( 0) ( 0, 0))

lim ( 0, 1) ( 0, 1)

( 0, 0, 1)

( 0, 0, 1))

(1, 0, 0) lim ( ,

0, 0, 1)

(1, 0, 0) (1 ) ( )

k
k k k

k
k k k k

k k k

k k k

m

l

k
k k k

k k

m

l

m

1

1

1

0

1

1

0

1

0

(27)

Note that ∉d (0)0 ; however one can use (18) to compute the value of
this boundary probability. Using (27), we can also compute the prob-
ability of a new connection at a random service initiation opportunity
as,

∑

= = = =

= − −

→∞
−

=

−

Pr

Pr τ τ Pr
V

α d m
V

(New Service at Service initiation opportunity)

lim ( 1 0) (New connection)
(1, 0, 0)

1 (1 ) ( )
(1, 0, 0)

.

j
j j

m

l
m

1

0

1
0

(28)

As for the backlog size, we would want to keep this quantity as small as
possible.

4.3. Probability that the backup server is busy

If the backup server is busy for longer periods, more power would
be utilized to keep it running. It would also imply that the connections
established with the data nodes to serve data packets would have to be
maintained for longer period. The duration for which the backup server
are kept on is directly proportional to the probability that the backup
server is busy. Since the backup server is busy iff it is not in vacation,
the probability that it is busy is given by

− V1 (1, 0, 1). (29)

4.4. Age of data at the beginning of a backup period

A data backup cycle consists of one vacation period followed by one
service period. During a data backup cycle, one can observe that the
first data packet arrival has to wait for the longest time for backup
service to restart (illustrated in Fig. 4). We randomly select a data
backup cycle and label the first data packet to arrive in that cycle as ν.

At any slot, we define the age of data based on the earliest packet in
the system. It is defined as the time spent by the earliest packet waiting
for restart of backup service. Clearly, under this definition if the backup
service is ON or if there are no packets in the system, the age of data is
0. Moreover, the age of data attains it maximum just before the start of
backup service (also illustrated in Fig. 4). Therefore, the total time
spent waiting by ν is the age of data at the beginning of a backup
period. We label this age as Ageν.

In Section 2.2, we introduced the recovery point objective (RPO)
which is one of the most crucial parameters defined in literature of data
backup processes. It defines the maximum time any data packet can
wait in the data packets queue. To meet the QoS objectives defined by
RPO, it is necessary to select the backup parameters such that Ageν is
within acceptable limits. By computing this QoS measure, we compute
the impact of vacations on the waiting time of data packets.

We first compute the number of vacations ν witnesses, excluding the
one in which it arrives, before the service is restarted. This will help us
compute the amount of time it spends waiting for the backup service to
restart. Note that ν might arrive in any vacation period after the service
is stopped (not necessarily the first one) but those earlier vacation
periods are not relevant as they are not part of age of ν. We refer to
Fig. 5 for an illustration of the delay of ν.

We observe the system at consecutive vacation epochs starting from
the vacation period during which ν arrives. We use the queue content at
these epochs to define an absorbing Markov Chain for this process. That
is, define the state space = … −l BΩ {1, 2, , 1, }, where in state i, the
system has i packets backlogged during a vacation while ν is in the
system. State B corresponds to the absorbing state in which the backup
process restarts. Notice that our backup system can transit from state a
to state b before being absorbed in state B, where a≤ b, if there are
exactly −b a arrivals during the vacation period and the backup pro-
cess does not start at the end of the vacation. The probability of this
transition to happen is − −α t b a(1 ) ( )b A where tA(n) is defined in
Section 3.4 (probability of n arrivals in a vacation period).

Since our system jumps between states until it finally gets absorbed,
we can model the number of vacations seen by ν as a discrete phase-
type distribution. This distribution is characterized by (β, M) where the
state space is Ω. Such a distribution comprises of −l 1 transient states

… −l({1, 2, , 1}) and 1 absorbing state (B) . The transition matrix

= ⎡
⎣⎢

⎤
⎦⎥

M
0

P M
1

0
and (β, βl) is the initial probability vector; M is given by

=
⎡

⎣

⎢
⎢
⎢

…
…

⋮ ⋮ ⋮ ⋱ ⋮
…

⎤

⎦

⎥
⎥
⎥

− − − − −
− − − −

−

−

−

−

M

α t α t α t α t l
α t α t α t l

α t

(1 ) (0) (1 ) (1) (1 ) (2) (1 ) ( 2)
0 (1 ) (0) (1 ) (1) (1 ) ( 3)

0 0 0 (1 ) (0)

A A A l A

A A l A

l A

1 2 3 1

2 3 1

1 (30)

and vector M0 can be calculated using the fact that P is a valid
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probability transition matrix, i.e., rows sum to 1.
Since the system is non-empty at the beginning of first (relevant)

vacation slot, our starting state is

∑= … = −−
−

−
−

−
−

− −
−

=

−
−( )β β β, , , , , 1 .α t

t
α t

t
α t

t
α t l

t l
i

l

i
(1 ) (1)

1 (0)
(1 ) (2)

1 (0)
(1 ) (3)

1 (0)
(1 ) ( 1)

1 (0)
1

1
A

A
A

A
A

A
l A

A
1 2 3 1

Define N as the number of phases till absorption to B, i.e., the number of
vacation epochs seen by ν. The generating function of N is given by

= − +−β MN z z I zM β( ) · ·( ) · 0
l

1 where I is the identity matrix (see Alfa
[27]). Using this, Ageν can be written as

∑= +
=

Age T R,ν
i

N

i
1

where Ti∼ T while R is the remaining vacation time of ν as shown in
Fig. 5. Since = ≥≥E T E T P N n( 1 ) ( ) ( ),n N n n{ } we can use Wald’s equation
(see Johnson [28]) to get the first moment of Ageν as

= × +E Age E N E T E R( ) ( ) ( ) ( ).ν (31)

We are left with the computation of E(R). We can do this by analyzing
the joint probability mass function(pmf) of the length of vacation the
first packet arrives in, T0, and R. Note that the vacation time in which ν
arrives, T0 (see Fig. 5), does not have the same distribution as T. This is
because there is at least one arrival in the vacation in which ν arrives.
The joint pmf can therefore be written as, for r≥ 0, t≥ 1,

∑= = = ⎛

⎝
⎜ = = ≥ ⎞

⎠
⎟

=
= = ∑ ≥

∑ ≥

=

=

=

Pr T t R r Pr T t R r A

Pr T t R r A

Pr A

( , ) , 1

( , , 1)

( 1)
.

i

T

i

i
T

i

i
T

i

0
1

1

1 (32)

Looking at Fig. 6, we can see that =R r when =T t if there are no

arrivals in the first − −t r 1 slots and at least one arrival in the slot in
which ν arrives. Hence (32) can be written as

= = = − =
−

− −
Pr T t R r A A P T t

T A
( , ) (0) (1 (0)) ( )

1 ( (0))
.

t r

0

1

(33)

From (33), we can calculate the first moment of the remaining vacation
time by computing

∑ ∑= − =
−=

∞

= +

∞ − −
E R rA A P T t

T A
( ) (0) (1 (0)) ( )

1 ( (0))r t r

t r

0 1

1

which can be simplified to

=
′

−
−

−
E R T

T A A
( ) (1)

1 ( (0))
1

1 (0)
.

(34)

5. Numerical evaluation

To demonstrate the sensitivity of the QoS measures on the backup
parameters, we evaluate the performance of backup system using rea-
listic parameter values. Therefore, we create a scenario from synthetic
data based on our experience working with real, yet proprietary data of
an actual data backup system. We translate the backup parameters into
model parameters of the batch service queueing system to analyze the
performance. These measures are the key elements which can help us
select the right parameters based on the performance requirements.

Backup system
We consider an organization which uses cloud services to backup

the data on laptops of its employees using a centralized backup server.

Fig. 4. Illustration of evolution of Age of data in a backup system.

Fig. 5. Illustration of delay of ν.
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This data is generated due to incoming and outgoing emails, documents
created or edited etc. From our practical experience and some real data,
we define the parameters of the backup process. The average data
generate by all users in 1 min is between 20 to 100 MB data. The
backup system on the other hand, has a bandwidth that is capable of
serving at a maximum speed of 100 MB per min. The data files are
zipped into data packets of size 16MB each and backup server can serve
upto 10 packets in a single batch. Moreover, once the backup server
enters a vacation period, it has to restart service if there are more than
30 packets in the backlog.

Queueing model
We define our slot length is equal to 10 sec. Using the information of

the backup system, the model parameters are defined below:

• It is well known that the arrival distribution has a heavy tail (see eg.
Liebeherr et al. [29]) ,i.e, there are some slots which will see a big
burst of arrivals of packets. Therefore, we model the arrival dis-
tribution to be a mixture of Poisson and Power law distribution.
The generating function of the number of arrivals in a slot can be
written as

∑

= × + − ×

=

−

=

∞

A z p e p
ζ z a
ζ a

ζ z a z
k

( ) (1 )
( , )
(1, )

( , )

λ z γ

γ

γ
k a

k

γ

( 1)

(35)

where λ is the arrival rate of the Poisson process and γ is the order of
power law distribution. For this example, we use

= = =a p γ25, .999, 3.5 while λ varies to model change in the
system load. We also need to ensure that the system remains stable,
i.e., the load of the system is less than 1.

• Since the backup server can serve upto 10 packets in a single batch,
the batch server capacity =c 10.

• Since the backup service has to restart if there are more than 30
packets in the backlog, the restarting threshold =l 30.

• Since the writing speed on an average allows the backup server to
write about 1 packet in a slot, we model the service time of m
packets as discrete uniform distribution U[ +m m, 2]. Therefore, the

= +E G m( ) 1m .

• We assume that the backup server goes into vacations of length
approximately equal to 5 min. Therefore, the vacation period T is
modeled as U[28, 32], i.e., uniformly distributed discrete random
variable between 28 and 32 slots. Moreover, while analyzing the
impact of vacation lengths on the model, we model T as

− +U v v[ 2, 2] such that the expected vacation length, =E T v( ) .

It is important to note that we have used fairly simple distributions
for service time and vacation periods. However, the results obtained in
the paper are valid for any general distributions of service time, vaca-
tion periods and number of arrivals in a slot defined by generating
functions Gm(z), T(z) and A(z), respectively.

5.1. Observations

In the graphs in Figs. 7–11 we show both the performance measures
of queueing model as well as the QoS measures of the backup process
under varying load or vacation length keeping other parameters con-
stant. These graphs represent the first moment of the random variables
defined in Sections 3.8 and4. Three policies are compared

1. = ∀ < <α i l0, 0 ,i this corresponds to the policy where the service
does not start until the server threshold is met.

2. = ∀ < <α i l1, 0 ,i this corresponds to the vacation policy which
resumes service if there is at least one packet in the queue when the
server wakes up from vacation. Equivalently, it can be defined as a
policy with =l 1.

3. = ∀ < <α i l, 0 ,i
i
c3 this corresponds to the policy which starts with

a probability that is linear to the number of packets in the queue.

Note that by comparing these policies, we are comparing the
threshold policy with a policy which also has probabilistic restarts.
Moreover, the policy with =α i c/3i is an example policy that we have
chosen for comparison while the model allows us to substitute any valid
value. Our primary aim while doing this comparison is to observe the
dependence of QoS measures on the model parameters.

While comparing these policies in Figs. 7–11, the ideal performance
for each QoS measure individually would be obtained either by policy
(1) or (2). In particular, while policy (1) performs best for QoS mea-
sures related to energy consumption and connection cost, policy (2)
performs best for QoS measures related to data safety. However, these
policies individually are not able to meet all the expectations. We ob-
serve that the policy (3) is able to tackle the trade off and gives a
performance which lies in between policy (1) and policy (2). Also, the
choice of parameters of our model, αs, T, l, c, allows us to get closer to
the desired quality of service measures. We illustrate selection of op-
timal parameters in Section 5.3 by defining the cost function of a user.
One can make the following general observations from the graphs

• from Figs. 7 and 8, the values of mean backlog size and the age of
data at the beginning of a backup period for policy (3) is in the
middle of the two policies (1) and (2). Limiting ourselves to these
measures, while the system performs better than policy (1), it per-
forms worse than policy (2).

• from Fig. 9, using policy (3), the probability of a new connection at a
service initiation opportunity reduces drastically as compared to
policy (2). Although, this probability under policy (3) is higher
when compared to policy (1), it is closer to policy (1) than (2).

• from Fig. 10, probability that the server is busy is significantly
lowered by using policy (3) as compared to policy (2). This prob-
ability is higher than the value obtained using policy (1) but fairly
close to it.

• from Fig. 11, the server content in a random batch using policy (3) is
higher than policy (2) and smaller than (1).

Fig. 6. Illustration of arrival of ν to compute joint distribution of T0 and R.
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5.2. Illustrating the trade-off using cost function

In this section we use the QoS measures of the backup service
computed in Section 4 to define a cost function for a user. Our primary
aim is to address the trade-off between doing frequent backups and
reducing resource usage. The frequency of performing backups is de-
pendent on all backup parameters and there are multiple ways of
changing this frequency. For instance one can increase the values of
restarting probabilities or decrease the restarting threshold l. Here, we
change the frequency by changing the restarting threshold l.

We define the cost function as a function of the restarting threshold l
as follows

= × + ×
+ × + ×

Cost l E Age e
E e

( ) 0.5 ( ) 20
0.25 ( Backlog content) 15

nu
Pr

Pr

( New connection )

( Server busy )

(36)

Further, we define = ( )α min 1,i
i

100 for i< l. The remaining parameters
c and ρ are kept constant at 10 and 0.6. Fig. 12 shows the change in the
cost function with change in the backup frequency. Clearly, the backup
frequency has to be chosen optimally which can be done by selecting

the backup parameters optimally. We show how we can compute the
optimal backup parameters in the next paragraph.

5.3. Cost optimization

In contrast to the comparisons done in Section 5.1 between three
particular policies, in this section we look at computing the optimal
parameters for our model. In Section 5.2, we defined a cost function of
the user to highlight the need of selecting the optimal backup para-
meters. However, to compute optimal parameters, it is more appro-
priate to define the user objective as a combination of cost function and
QoS constraints. We use the four QoS measures, E(Ageν), Pr( New
connection), E( Backlog content), Pr( Server busy) computed in
Section 4 to define the following cost function

… = × + ×−W l c α α e e( , , , , ) 20 15l
Pr Pr

1 1
( New connection ) ( Server busy )

and QoS constraints of a user as

≤ ≤E Age E( ) 30, ( Backlog content ) 20.ν (37)

For illustration purposes, we minimize this function by varying the

Fig. 7. Mean backlog size.

Fig. 8. Mean age of data at the beginning of backup cycle.
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starting probabilities αis and threshold l while keeping the server ca-
pacity c constant. More precisely, we propose a simple mechanism to
find the optimal l and … −α α α, , , l1 2 1. Our primary aim is to show that the
optimal policy may not be a pure threshold policy.

A pure threshold policy can be represented as = ∀ <α i m0,i and
= ∀ ≥α i m1, ,i where m defines the threshold. Further, a pure

threshold policy with threshold which minimizes cost is called the
optimal pure threshold policy.

The parameters used here are as defined in the beginning of
Section 5. For a fixed load ρ, the task of finding the optimal l and αis for
our model is equivalent to solving the following optimization problem

…

≤
≤

≤ ≤ = … −
= ≥ ≤

…
−

−
W l α α α

E Age
E

α i l
α i l l l

minimize ( , , , , )

subject to: ( ) 30
( mean backlog content ) 20

0 1, 1, , ( 1)
1, ,

α α l
l

ν

i

i

, , ,
1 2 1

max

l1 1

We use =l 15max to find the solution. For a given load ρ, solution of this
problem gives us the optimal parameters l α*, *i s. We use an iterative

solver, auglag() in R, to solve the above non-linear optimization pro-
blem. We set the starting point of the solver as the optimal pure
threshold policy. Therefore, the solution found by the solver would be
better than the optimal pure threshold policy. These may not be glob-
ally optimal solutions; however, we have shown that optimal threshold
policies with probabilistic restarts perform better than optimal pure
threshold policies with threshold l less than lmax .

In Fig. 13 we compare the cost graph of the user using the optimal
parameters with pure optimal threshold based policies. Note that we
have considered a fairly simple optimization problem. One could also
have constraints as well as utility function dependent on higher mo-
ments of QoS measures such as Var(mean backlog content ) which can
be derived using the generating functions computed in paragraph 3.8.

5.4. Final insights

In Section 5.1 we illustrate the dependence of QoS measures on the
service parameters. In Section 5.3 we look at an optimization problem
to compute the system parameters using the cost function of the user.
The key observations are

Fig. 9. Probability of a new connection at a service initiation opportunity.

Fig. 10. Probability server busy.
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• a policy with probabilistic restarting conditions is able to address
the trade off between performing backups too frequently and re-
ducing resource consumption.

• for a give system load ρ, the probabilistic restarting policy with
optimal parameters αi

ρ s may outperform the fixed threshold po-
licies.

• the QoS measures can be precisely computed numerically and the
parameters can be chosen to meet the desired Quality of Service.

• the performance changes significantly if the model parameters are
varied. Therefore, users with different desired QoS need to be
treated differently.

6. Conclusions and future work

We have been able to model exhaustive data backup processes as a
very general queueing process with batch service, vacations and prob-
abilistic restarting conditions. Moreover, the number of arrivals in a slot
and service time can have any general distribution. We have shown it is
natural to model data backup processes this way. By computing the QoS
measures and analyzing their dependence on the system parameters, we

have illustrated how one can strike a balance between doing frequent
backups and reducing resource usage for a given Quality of Service. Our
observations in Section 5.1 summarize the dependence of performance
measures on model parameters. Selecting the optimal parameters al-
lows the system to take longer vacations or support a higher load for the
same quality of service. For a given system, such a model empowers us
to select the parameters based on the arrival process and desired system
performance while keeping the system stable. We have illustrated this
using an example of how to use the cost function of the user to select the
starting probability parameters.

Our model adopts restrictions that the number of arrivals in the
system are assumed to be independent and identically distributed for
each slot of the system. Moreover, a data backup process involves re-
plication or erasure coding of stored data which has not been modeled
here. The mechanism of replication or coding of the backup process also
depends on the topology of the data nodes involved and the exact
schedule of the background processes and is therefore challenging to
model. We will tackle these challenges in our future work.

Fig. 11. Average server content in random batch.

Fig. 12. Cost function for varying frequency of backups. Fig. 13. Cost of doing backup for varying load.
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